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Nucleon form factors
A review of theoretical models
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Abstract. The general structure of elastic and inelastic nucleon scattering is outlined. The predictions of
dispersion relations, chiral perturbation theory, and lattice calculations are reviewed. Special attention is
given to the role of the pion cloud at small momentum transfer.
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1 Elastic electron–nucleon scattering

The elastic scattering process e(k)+N(p) → e′(k′)+N ′(p′)
may be described by the Mandelstam variables

s = (k + p)2 , t = (k′ − k)2 , u = (k − p′)2 , (1)

with the constraint s + t + u = 2M2 + 2m2, where M
and m are the masses of the nucleon and the electron,
respectively. Furthermore, the four-momenta fulfill the on-
shell conditions k2 = k′2 = m2 and p2 = p′2 = M2. In
general the electrons can be considered to be massless,
m = 0, because it requires highly relativistic energies to
probe the internal structure of the nucleon. Finally, it is
useful to introduce the crossing-symmetrical variable

ν =
s − u

4M
, (2)

and to consider ν and t as the independent kinematical
variables to describe the scattering process.

Due to the spins of the involved particles, we can define
24 = 16 helicity amplitudes Tα′β′; αβ , where α and β are
the helicities of the electrons and protons, respectively. If
we neglect the electroweak currents, parity conservation
yields the relation

Tα′β′; αβ = phase · T−α′−β′; −α−β (3)

which reduces the number of independent amplitudes to 8.
A further reduction follows from time reversal invariance,

Tα′β′; αβ = phase · T∗
αβ ; α′β′ . (4)

In conclusion we find 6 independent invariant amplitudes
to describe electron-nucleon scattering, 3 of them conserv-
ing the helicity of the electron. Assuming parity and time-
reversal invariance, the scattering matrix takes the form

T =
6∑

i=1

Ai(ν, t) Ti , (5)

where the Ai are complex functions of the kinematical
Lorentz invariants ν and t, and the Ti denote six inde-
pendent combinations of the helicities, e.g., (++ → ++),
(++ → +−), (−+ → −+) conserving the electron helicity
and (++ → −+), (++ → −−), (−+ → ++) changing
the electron helicity. The latter 3 amplitudes vanish if the
electron mass can be neglected.

The Mandelstam plane for electron-nucleon scattering
is shown in Fig. 1 for highly relativistic electrons (m = 0).
The physical region for the reaction e + N → e′ + N ′ is
given by the horizontally hatched area denoted “s chan-
nel”. It is limited by the axis t = 0 (0◦ scattering)
and a hyperbolically shaped curve at negative t values
(180◦ scattering). The u-channel region to the left is re-
lated to the s-channel region by the symmetry under the
crossing operation ν → −ν. Finally, the physical reac-
tion e+ + e− → N + N̄ occurs in the kinematical re-
gion, denoted by “t channel”, which has its threshold at
t = 4M2 ≈ 3.5 GeV2. The dashed lines in Fig. 1 describe
the onset of reactions that compete with elastic scattering.
The lowest thresholds for such inelastic processes are given
by pion electroproduction of a nucleon for s = (M +mπ)2
and u = (M + mπ)2 and electron-positron pair annihila-
tion with the production of a two-pion system for t = 4m2

π.
Inside the triangle formed by the dashed lines, neither of
these inelastic reactions can occur, and as a consequence
the scattering amplitudes Ai(ν, t) are real functions in this
area near the origin of the Mandelstam plane. Outside the
triangle, we obtain the imaginary parts of the amplitudes
by “cutting” the respective Feynman graphs and putting
the intermediate particles on the mass shell. This is famil-
iar for the process e− + e+ → π− + π+ → N + N̄ . Due to
the existence of competing inelastic channels like π+π−,
the scattering amplitudes (essentially the form factors) are
complex functions for t > 4m2

π. Since elastic electron scat-
tering has usually been analyzed in the framework of the
Born approximation, the scattering amplitudes in the s-
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Fig. 1. The Mandelstam plane for highly relativistic electron-
nucleon scattering. See text for explanation

and u-channel regions have been taken to be real. How-
ever, the exchange of 2 photons leads to an intermediate
state for the reaction e+N → ẽ+ Ñ +π → e′ +N ′, which
results in an imaginary part of the scattering amplitude.

Though the two-photon physics is suppressed by the
fine-structure constant αem ≈ 1/137, it may play an im-
portant role under kinematical conditions in which the
Born approximation is small or vanishes. As an example,
the Born approximation for electron scattering off a heavy
nucleus, e.g. 208Pb, leads to a series of zeros in the cross
section, which are filled in by two-photon effects. These
are, however, dominated by contributions with the inter-
mediate nucleus being in its ground state, because in this
case the photon couples to the total charge Z at each ver-
tex. Contributions of single particle excitations are there-
fore suppressed by the huge factor of 1/Z2, and even col-
lective excitations will involve only a fraction of the nu-
cleons. The problem can therefore be solved by a partial
wave analysis, which accounts for the deformation of the
electron orbits by the static Coulomb potential but treats
the nucleus as a rigid object. Experimental and theoretical
investigations of so-called dispersion effects, contributions
of intermediate excited states to electron scattering, were
never quantitatively successful for several computational
reasons, the coupling to a large number of bound states
and a complicated continuum of break-up reactions, and
one principal reason, namely that such an analysis requires

a full-fledged analysis of inelastic scattering before hand.
In view of these complications, electron scattering off light
nuclei and in particular off the proton, has usually been
treated in the Born approximation. Some exceptions of
this are the early work on the dispersion corrections for
the proton [1], and the search for the magnetic monopole
transition [2]. However, we are now seeing a revival of the
two-photon physics [3] because of two observations that
have been made possible by recent precision experiments:

– The ratio Gp
E/Gp

M as function of Q2 turns out to be
constant if the differential cross section is analyzed by
the Rosenbluth plot. The same ratio drops nearly lin-
ear and tends to a zero at Q2 ≈ 8 GeV2 if evaluated
from recent polarization data at the JLab [4].

– The electric proton r.m.s radius rp
E as determined by

electron scattering is about 0.84 fm [12], whereas atom-
ic physicists derived values around 0.90 fm [5].

We conclude this section with a brief review on the in-
variant amplitudes in elastic electron-nucleon scattering.
Assuming parity and time reversal invariance, there are 6
complex amplitudes Ai depending on 2 kinematical vari-
ables, e.g., ν and t. If we further neglect the mass of the
highly relativistic electron, only 3 amplitudes contribute
to the scattering process. In the Born approximation one
more variable vanishes and all the information is contained
in 2 form factors, say the electric (GN

E ) and magnetic (GN
M )

Sachs form factors. Because there is no dispersion in ν,
these form factors only depend on one variable, namely
t = q2 = −Q2. As a result, the current operator for space-
like photons (Q2 > 0) can be expressed by two real form
factors. In particular in the Breit frame, the current takes
the simple form

Jµ
N = (ρN , jN ) =

(
GN

E

(
Q2) ,

iσ × q
2m

GN
M

(
Q2)

)
. (6)

2 Dispersion relations

The virtual photon as produced by pair annihilation is
time-like, and therefore we can discuss the process in the
photon’s c.m. frame. The quantum numbers of the photon
are J PC = 1−−, i.e., spin 1 and odd under both parity
and charge conjugation. The isospin is not fixed, it can be
I = 0 or 1. The imaginary part of the scattering amplitude
originates from the fact that the photon can decay into any
hadronic intermediate state before the final-state NN̄ pair
is produced, provided that the above quantum numbers
are conserved. The lightest intermediate states consists of
two pions. The required value J = 1 corresponds to a
relative P state, which is odd under particle exchange.
In order to have overall Bose symmetry, the state vector
has to be odd in isospace, too, which is only possible for
I = 1. Therefore the isovector photon couples only to two-
pion states with IG(J PC) = 1+(1−−), with a positive
G parity as for any even number of pions involved. The
first important resonance in that channel is the ρ(770).
The lightest intermediate states coupling to the isoscalar
photon are the three-pion systems with quantum number
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0−(1−−), which also include the resonances ω(783) and
φ(1020).

The form factor in the space-like region (t = −Q2 < 0)
is a real function which can be constructed as the Hilbert
transform of the imaginary part of the amplitude or, in
short, the spectral function. A generic form of such a dis-
persion relation takes the form

GV,S(Q2) =
1
π

∫ ∞

tthr

Im GV,S(t′)
t′ + Q2 dt′ , Q2 ≥ 0 (7)

where tthr = 4m2
π for the isovector (V) and tthr = 9m2

π

for the isoscalar (S) channel. The spectral function for
the isovector form factor has been constructed from other
available data via the relation [6]

Im GV(t) = factor · F∗
π(t) Tππ→NN̄ , (8)

where Fπ(t) is the pion form factor describing the produc-
tion of the two-pion system and Tππ→NN̄ is the scattering
matrix that connects the two pions with quantum numbers
J PC = 1−− to an NN̄ state carrying the same quantum
numbers and isospin I = 1. The pion form factor is very
well known, but Tππ→NN̄ has to be constructed in an un-
physical region. This can be achieved by an analytic con-
tinuation of the respective pion-nucleon scattering matrix,
which in practice works in the region tthr ≤ t � 1 GeV2.
Beyond this value, ImGV is usually modelled by higher
vector mesons. Unfortunately, the isoscalar part has to
be modelled by vector mesons over the full t range. Be-
ing based on pion-nucleon scattering data, (8) contains
all the correlations within the two-pion state and all the
rescattering processes leading to the final NN̄ state. In
particular Fπ and Tππ→NN̄ are complex functions, both
carrying exactly the phase of the respective pion-pion sys-
tem, δ(I = 1, J = 1), as long as the t-channel energy is
below the four-pion threshold.

A schematic picture of the magnetic proton form fac-
tor as function of t shows the following features: In the
region t = −Q2 < 0 (electron scattering), this form
factor decreases with increasing values of Q2 essentially
like a dipole form, and for large Q2 it approaches the
Q−4 behavior required by asymptotic QCD. The range
4m2

π ≤ t ≤ 4M2 describes the unphysical region, which is
dominated by (virtual) production of many-pion systems.
In particular, the strong coupling of the photon to sev-
eral vector mesons produces large fluctuations of the form
factor, which clearly shows the importance of the spectral
region. The form factors in the unphysical region have re-
cently been constructed from the available space-like and
time-like data by means of dispersion relations [7]. The
physics of the storage rings starts at 4M2. Due to the
existence of the spectral region to the right of the origin
(t = 0), the measured time-like form factors for t > 4M2

are larger than the space-like form factors at the same |t|
by about a factor of 3 to 4. It is therefore obvious that t
values of at least 10 GeV2 will be necessary to reach the
realm of asymptotic QCD, which requires that the form
factors take exactly the same value for space-like and time-
like photons at sufficiently large values of |t|.

3 Chiral perturbation theory

As has been mentioned before, the spectral region of
the form factors starts with two-pion intermediate states,
which yield the tail of the density distribution at large
distances. It is therefore interesting to study the model-
independent predictions of ChPT for the spectral func-
tion. As an example, the spectral function of the isovector
electric Sachs from factor takes the form

Im GV
E = 1

64π f2
π

√
t

{
2
3kt

[
g2

A (5t − 8mπ) + 4k2
t

]

− g2
A

M

(
1 − 2m2

π

)2 (
1 + 3t

8M2

)
arctan

(
2kt

√
4M2−t

t−2m2
π

)

+ g2
A kt

M2

(
t − 2m2

π

) }
, (9)

where kt =
√

t/4 − m2
π is the pion momentum in the c.m.

system, gA ≈ 1.26 the axial coupling constant, and fπ ≈
93 MeV the pion decay constant. Equation (9) represents
the result at the one-loop order. The two-loop terms and
the respective low-energy constants are given in [8], which
also contains an excellent introduction to the field. The
punch line is that (9) should not be further expanded as a
power series in 1/M , as usually done in HBChPT, because
such an expansion destroys the proper analytic structure
of the spectral function. In particular, it is straightforward
to obtain the correct k3

t behavior of the P-wave pions from
the unexpanded form. Below threshold, for t < 4m2

π, kt

becomes imaginary. As a consequence the expression that
describes the imaginary part in (9) now contributes to
the real part of the form factor. Furthermore it is easy to
work out that the argument of the arctan becomes i at
t = tc = 4m2

π − m4
π/M2 ≈ 3.98m2

π. As can be seen from
the relation arctan(x) =

∫ x
dx′/(1 + x′2), the arctan has

a singularity if the upper limit of the integral approaches
± i. Though this singularity is not on the physical plane,
its appearance so close to threshold leads to a dramatic
enhancement of the two-pion component in the spectral
function.

The predictions of the full two-loop order are shown
for the two Sachs form factors by the full lines in Fig. 2.
The comparison with the results of dispersion relations
(dotted lines) shows the importance of the ρ(770), which
however can be added to ChPT with a reasonable choice
of strength and width of that resonance (dashed lines).
Unfortunately, it is not possible to extend the dispersion
analysis to values much above t = 40m2

π. Seeing that both
ChPT and DR predict a positive definite spectral function
in the region t � 40m2

π, we conclude that there must be a
considerable strength with negative sign above that region
in order to yield an overall dipole shape of the form fac-
tors. Unfortunately there is not enough information about
the heavier vector mesons in order to really predict the
spectral function in the region 40m2

π � t � 4M2. The
masses and coupling strengths of some of these heavier
vector mesons are therefore taken as fit parameters in or-
der to obtain a realistic description of the form factors
within the dispersion analysis. Turned into the language
of ChPT, it also takes LEC’s beyond the physics of the
ρ(770) to describe form factors of the dipole form.
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Fig. 2. Spectral functions of the isovector electric (lower
3 lines) and magnetic (upper 3 lines) Sachs form factors
weighted with 1/t2. Dotted lines: dispersion relation [6], full
lines: ChPT [8], dashed lines: ChPT plus ρ-meson contribu-
tion. Figure from [8]

4 The role of the pion cloud

In view of the presented results of ChPT and DR, it is
legitimate to ask, how much contributes the pion cloud to
the spatial extension of the charge distribution? In order
to answer this question we have to Fourier transform the
Sachs form factors as defined in the Breit or brickwall
frame, q = (0,q). As an example we obtain

GE(q2) =
∫

d3rρE(r)eiq·r = eN − 1
6 q2〈r2〉N

E + . . .(10)

ρE(r) =
1

(2π)3

∫
d3q GE(q2) e−iq·r . (11)

Of course, this procedure is meaningful only for small
space-like momentum transfers, within a region τ =
Q2/4M2 = −t/4M2 < 1. The parameter τ measures the
relativity, in particular τ = −1 defines the onset of nu-
cleon pair production. In the complex t-plane we have to
stay well inside the circle |τ | < 1, if we want to use non
relativistic notions of single particle wave functions and
spatial structure. Beyond this circle relativistic effects like
boosts and Lorentz contractions will inevitably dominate
the behavior of the form factors.

With this caveat in mind, let us try to answer the
question raised above. For simplicity of notation we first
define the spectral function for a form factor, σi(µ2) =
Im Gi(µ2). Next we Fourier transform (7) according to
(11) and obtain the generic form

ρi(r) =
1

4π2

∫ ∞

µthr

dµ2 σi(µ2)
e−µr

r
, (12)

a superposition of Yukawa terms with increasing mass µ.
Since the spectral function does not seem to have a zero
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Fig. 3. The densities of charge and magnetization due to the
pion cloud, 4πr2ρ(r) for the electric (lower band) and isovector
magnetic (upper band) Sachs form factors [9]

crossing in the low-mass region, we can at once give an
upper limit for the r.m.s. radius,

〈r2〉i ≤ 6
µ2

thr

, (13)

with an upper limit obtained if all the strength is con-
centrated at threshold. Numerically this corresponds to
radii rV < 1.72 fm and rS < 1.15 fm for the isovec-
tor and isoscalar form factors, respectively. The question
about the pion contribution can, of course, only be an-
swered qualitatively, because the extraction of the two-
pion term from the full spectral function is somewhat
model-dependent. Guided by ChPT and quite realistic
models of the ρ(770), we obtain the results presented in
Fig. 3 for the distributions of charge and magnetization
due to the “pion cloud” [9]. The seemingly large differ-
ence between charge and magnetization is essentially due
to the usual normalization, GV

E(0) = (ep − en)/2 = 0.5,
GV

M = (µp − µn)/2 = 2.353. Integrated over all distances,
the pion cloud contributes about 30 % to the total charge
of the proton and 30 % to 〈r2〉V

E . The pion contribution
normalized to itself has 〈r2〉π ≈ 1 fm2, substantially out-
side of the proton radius 〈r2〉p

E ≈ 0.74 fm2. Since the pion
contribution is smoothly distributed over a relatively large
region, its Fourier components will die out much faster
with increasing Q2 than the contributions of heavier mass
systems (vector mesons, quark core). Therefore, the over-
all dipole factor with mass µdip = 0.84 GeV can not be ex-
pected to describe the form factors over the full Q2 range.
The evidence for a pionic component in the form factors
is clearly seen, such as in a recent comparison of the world
data with a phenomenological pion-cloud plus quark-core
model [10]. Our analysis agrees with these findings qual-
itatively, although we find a considerably smaller pionic
density at radii above 1 fm and a correspondingly smaller
radius of the pionic distribution.
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5 Lattice calculations

While all other theories and models have their shortcom-
ings in terms of adjustable parameters, lattice calculations
hold the promise to yield absolute predictions based on
QCD. Unfortunately, the lattice calculations still have to
go a long way to yield quantitative results even for rela-
tively simple observables like form factors. At present the
main drawback of such calculations is the large quark mass
that has to be used for numerical reasons. As an exam-
ple, Fig. 4 shows the results of [11] for the isovector Pauli
radius calculated with “pion masses” between 500 MeV
and 1 GeV. Expressed in terms of the threshold for the
spectral function, this corresponds to tthr � 50 m2

π in-
stead of the physical value 4m2

π. As a result the (physical)
pion cloud effects will be essentially wiped out, and indeed
the lattice results predicts a much too compact structure
of 〈r2〉V

2 ≈ 0.4 fm2, while the dispersion analysis of the
data yields a value of about 0.8 fm2. In this situation it
is a very promising strategy to combine ChPT and lat-
tice calculations. While the former can not predict the
anomalous magnetic moments or the radii themselves, it
allows solid predictions about how these observables de-
pend on the pion mass. As we can see from Fig. 4, the
rapid increase of the radius does not become visible until
the pion mass has been reduced to about 200 MeV, and
therefore the long-range tail of the density distribution
can not be described by present lattice gauge calculations.
The role of the pion cloud stands out most clearly in the
case of the electric form factor of the neutron, which is
essentially described by a negative pion cloud around a
positively charged quark core. As a result a recent lattice
calculation of [13] with mπ � 500 MeV found only a tiny
neutron radius corresponding to about 20% of the exper-
imental value of 〈r2〉n

E = −0.116 fm2. However, in lack
of any other parameter-free theory within sight, our only
hope remains a gradual numerical and analytical progress
in lattice calculations in order to connect the nucleon’s
properties directly with QCD.

6 Transition form factors

The form factors of a transition from the nucleon N to a
resonance R can be formally defined in a covariant way,

Gm = 〈R, λ′ = m − 1
2 | εµ

m · Jµ | N, λ = − 1
2 〉 , (14)

where λ and λ′ are the helicities of the nucleon and of
the resonance, respectively. The index m denotes the he-
licity transferred by the electromagnetic field, which is
characterized by 2 transverse polarization vectors εµ

(±) =
1√
2

(0, ∓, −i, 0), a longitudinal polarization vector εµ
(0) =

1
Q2 (q, 0, 0, ω), and a virtual photon with four-momentum
qµ = (ω, 0, 0, q). Equation (14) yields 3 independent form
factors for each resonance, the 3 transitions starting from
λ = + 1

2 follow from parity conservation.
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Fig. 4. The isovector Pauli radius obtained from lattice calcu-
lations [11] as function of the pion mass (open symbols). The
full circle is the result of dispersion relations [12]. The full and
dashed lines are chiral extrapolations to smaller pion masses,
see [11] for details

The form factors of (14) are related to the more famil-
iar helicity amplitudes [17],

A1/2 =
√

2πα
kγ

〈R, 1
2 | Jx+iJy√

2
| N, − 1

2 〉 ξ ∼ G+ ,

A3/2 =
√

2πα
kγ

〈R, 3
2 | Jx+iJy√

2
| N, 1

2 〉 ξ ∼ G− ,

S1/2 = −
√

2πα
kγ

〈R, 1
2 | ρ | N, 1

2 〉 ξ ∼ G0 ,

where use has been made of the continuity equation ωρ =
q J0. The additional factor ξ is the phase of the decay ma-
trix element R → Nπ. It has been introduced to make
the helicity amplitudes independent of arbitrary overall
phases of the wave functions. If the resonance has a spin
J ≥ 3

2 , both A3/2 and A1/2 contribute and appropriate
linear combinations of them are defined as electric (GE)
and magnetic (GM ) form factors. The charge matrix ele-
ment for resonance excitation is then usually dubbed GC ,
which is somewhat confusing, because in the case of elastic
scattering it is traditionally called GE .

We also note that the concept of resonance form factors
is based on the notion of a zero width resonance. The ac-
tual observables are, e.g., electric (E�±), magnetic (M�±),
and charge (S�±) multipoles that are complex functions
of momentum transfer (Q2) and total c.m. energy (W ).
Therefore, the derivation of real form factors Gi(Q2) re-
quires some analysis which is by no means model indepen-
dent.

For an isolated resonance like the ∆(1232) we may use
a Breit-Wigner ansatz that factorizes the multipole into
the product of a (real) reduced multipole, say Ē�±(Q2),
and a Breit-Wigner form including some kinematical and
resonance properties depending on W . This ansatz is then
fitted to the data, and the reduced multipole follows from
the imaginary part of the actual multipole at the reso-
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Fig. 5. The Q2 dependence of the N → ∆ helicity amplitudes. The solid and dashed curves are the results of the superglobal
fit with MAID [14] and the predictions of the hyperspherical constituent quark model [15]. The dotted lines show the pion cloud
contributions calculated with the Dubna-Mainz-Taipei model [16]. See [17] for further details

nance position. It is quite obvious that this procedure will
be even more model dependent in the case of overlapping
resonances at the higher excitation energies.

As an example, the helicity form factors for the exci-
tation of the ∆(1232) may be obtained as

A∆
1/2(Q

2) = − 1
2 (3 Ē1+(Q2) + M̄1+(Q2)) ,

A∆
3/2(Q

2) =
√

3
2 (Ē1+(Q2) − M̄1+(Q2)) ,

S∆
1/2(Q

2) = −√
2 S̄1+(Q2) . (15)

The simplest picture for the N → ∆(1232) transition is
a quark spin flip leading from the octet to the decuplet
representation of SU(6). In concordance with this model,
the transition is dominated by a magnetic dipole transi-
tion (M1+), while the corresponding electric quadrupole
transition (E1+) is very small. On the other hand, asymp-
totic QCD requires that for sufficiently large Q2 the am-
plitude A3/2 should be suppressed relative to A1/2, be-
cause the former transition can not take place on an indi-
vidual quark with spin 1/2. Therefore, the ratio REM =
E1+/M1+ should approach 1 for Q2 → ∞, while the ex-
isting data yield REM ≈ −2% with a slight increase with
growing Q2 and some indication that REM crosses the
zero line near Q2 = 4 GeV2. As a consequence of the
small value of REM , (15) yields A∆

3/2 ≈ √
3 A∆

1/2, which is
also obtained by all quark and many other models. How-
ever, if it comes to the absolute magnitude of these helic-
ity amplitudes, the usual quark models underestimate the
strength by 30% or more as is shown in Fig. 5 for the Gen-
ova hypercentral constituent quark model [15]. The failure
to describe the data can again be traced to the missing
pion cloud. Such effects can be studied more quantita-
tively in dynamical models like the Dubna-Mainz-Taipei
model [16]. The essential point is that a pion can also
be produced by a non-resonant mechanism (e.g., Kroll-
Ruderman term), but then the pion rescatters from the
nucleon, and because of unitarity the corresponding am-
plitude inevitably takes the phase δ1+ of the pion-nucleon
system in the ∆ region (Fermi-Watson theorem). In other
words, the direct production of the ∆ (say by a quark spin-
flip) and the indirect production by means of rescattering
add coherently in the physical amplitude. The contribu-

tion of the pion cloud is shown in Fig. 5 by the dotted
lines, and by adding the quark model (dashed lines) and
the pion cloud distributions, we obtain a nice agreement
with the data. In the case of the charge transition S1/2,
the pion cloud is particularly important. This transition
measures the induced charge quadrupole moment, which
scales with r2, the square of the distance to the nucleon’s
center. It is therefore no big surprise that the pion cloud
at distances of 1 fm and beyond is much more effective
than the quark core of typically 0.5 fm.
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